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Abstract
All current benchmarks for multimodal deep-
fake detection manipulate entire frames using
various generation techniques, resulting in over-
saturated detection accuracies exceeding 94%
at the video-level classification. However, these
benchmarks struggle to detect dynamic deep-
fake attacks with challenging frame-by-frame
alterations presented in real-world scenarios. To
address this limitation, we introduce FakeMix,
a novel clip-level evaluation benchmark aimed
at identifying manipulated segments within both
video and audio, providing insight into the origins
of deepfakes. Furthermore, we propose novel
evaluation metrics, Temporal Accuracy (TA) and
Frame-wise Discrimination Metric (FDM), to
assess the robustness of deepfake detection models.
Evaluating state-of-the-art models against diverse
deepfake benchmarks, particularly FakeMix,
demonstrates the effectiveness of our approach
comprehensively. Specifically, while achieving an
Average Precision (AP) of 94.2% at the video-
level, the evaluation of the existing models at
the clip-level using the proposed metrics, TA and
FDM, yielded sharp declines in accuracy to 53.1%,
and 52.1%, respectively. Code is available at
https://github.com/lsy0882/FakeMix.

1 Introduction
Rapid advances in hyper-realistic deepfake technol-
ogy [Zhang, 2022; Seow et al., 2022; Guarnera et al., 2020;
Singh et al., 2020; Korshunova et al., 2017] have raised
significant privacy and social concerns [Chen et al., 2022;
Li et al., 2021a], requiring robust detection methods across
both video [Tolosana et al., 2020] and audio domains [Jia
et al., 2018]. Despite progress in multimodal deepfake de-
tection, existing benchmarks such as FakeAVCeleb [Khalid
et al., 2021b], DFDC [Dolhansky et al., 2020] and
KoDF [Kwon et al., 2021], focus on full-video manipula-
tions, which often results in inflated detection accuracy and a
lack of insight into specific manipulated segments. This gap
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Figure 1: Comparison between previous benchmark and the pro-
posed benchmark, FakeMix. While FakeAVCeleb operated deep-
fake on complete video or audio segments for video-level classifica-
tion, FakeMix introduces dynamic frame-level alterations to enhance
evaluation of deepfake video detection.

highlights the need for more precise detection methodologies
that can identify and analyze the manipulated regions within
the media.

Recent works have evolved from image-based meth-
ods [Khan and Dai, 2021; Tarasiou and Zafeiriou, 2020;
Zheng et al., 2021; Zhang et al., 2021; Gu et al., 2022b;
Gu et al., 2022a; Heo et al., 2023], which analyze facial infor-
mation [Ikram et al., 2023; Heo et al., 2023] or morphologi-
cal details [Tarasiou and Zafeiriou, 2020; Li et al., 2021b], to
more sophisticated video-based methods [Yang et al., 2023;
Wang et al., 2022; Lewis et al., 2020; Khalid et al., 2021b;
Shahzad et al., 2022; Hashmi et al., 2022; Cai et al., 2022;
Khalid et al., 2021a] that incorporate temporal data [Gu et
al., 2022a]. However, these approaches generally rely on
binary classification of the entire videos (video-level), over-
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Table 1: Comparison of Benchmark Datasets for Deepfake Detection

Dataset Fake Video Fake Audio Fine-grained labeling Deepfake Appliance
DFDC [Dolhansky et al., 2020] Yes Yes No Entirely applied

KoDF [Kwon et al., 2021] Yes No No Entirely applied
FakeAVCeleb [Khalid et al., 2021b] Yes Yes Yes Entirely applied

FakeMix (Ours) Yes Yes Yes Randomly applied to specific segments

looking specific regions of manipulation and thereby limit-
ing a comprehensive assessment of detection model perfor-
mance. Moreover, as deepfakes become more sophisticated,
the importance of temporal information in identifying incon-
sistencies in facial movements [Jung et al., 2023] has become
more pronounced, highlighting the shortcomings of current
methodologies. Recognizing these challenges, our work in-
troduces three main contributions as follows:

1. We propose FakeMix, a novel clip-level audio-video
multimodal deepfake detection benchmark. Unlike es-
tablished benchmarks that dominantly focus on overall
video-level manipulation, Fakemix provides a distinctive
assessment by pinpointing specific tampered segments
within contents. This approach addresses critical limi-
tations of current benchmarks, which overlook localized
alterations.

2. We develop novel evaluation metrics, namely Temporal
Accuracy (TA) and Frame-wise Discrimination Metric
(FDM), designed to validate the robustness of deepfake
detection models. These metrics enable precise identifi-
cation of deepfake-affected regions, enhancing the gran-
ularity of results. Our comprehensive evaluation against
existing benchmarks demonstrates the efficacy and ne-
cessity of incorporating TA and FDM into the evaluation
framework.

3. To the best of our knowledge, this is the first attempt to
assess deepfake video detection at the clip-level, aim-
ing to enhance interpretability. By precisely identify-
ing the specific location (Where), modality (Which),
and deepfake generation technique (in Whatever bench-
marks) employed in the manipulation, our approach rep-
resents a significant rectification, offering insights into
understanding multimodal deepfake detection.

2 Related Work
There have been numerous research works that studied how
to detect deepfakes in multimedia. Recently, deepfake de-
tection studies leverage various DNN architectures to iden-
tify and distinguish manipulated videos [Nguyen et al., 2022;
Yu et al., 2021]. Depending on which modalities are in-
volved, deepfake detection tasks can be divided as follows:

Single-Modality Deepfake Video Detection. In general,
conventional methods utilized a single modality, especially
visual domain. [Li et al., 2020] addressed the challenge of
partial face manipulations, where only video-level labels are
provided. [Gu et al., 2021] exploited spatial-temporal incon-
sistency appeared in forged videos. To tackle the poor gen-
eralization issue, [Cozzolino et al., 2021] enhanced robust-
ness through metric learning with adversarial training to cap-

ture temporal facial features, which incorporates high-level
semantic features. In spite of their effectiveness, they do not
guarantee the high performance of videos with audio deep-
fakes all at once. This demonstrates the need for a methodol-
ogy that utilizes both modalities simultaneously.

Audio-visual Deepfake Video Detection. The emergence
of multimodal learning has led to the development of deep-
fake detection works integrating both auditory and visual
modalities. [Zhou and Lim, 2021] presented a task for joint
audio-video deepfake detection, leveraging intrinsic synchro-
nization between modalities. They improved generalization
abilities in unseen deepfake types, focusing on modality re-
lationships. To this end, [Zhao et al., 2022] introduced a
self-supervised transformer-based contrastive learning. They
leveraged learning lip motion without extensive annotations,
encouraging alignment of paired audio-visual representations
while promoting diversity on unpaired instances. [Feng et
al., 2023] developed an auto-regressive model to generate
audio-visual feature sequences, capturing temporal synchro-
nization. [Yu et al., 2023] introduced a unified modality-
agnostic approach to handle missing modality scenarios and
extract speech correlation, making deepfakes challenging to
reproduce. [Raza and Malik, 2023] also proposed a unified
framework, which extracts and fuses learned channels from
audio and video for effective multi-label detection. While
these studies have exploited significant techniques to improve
detection performance, they can only detect whether deep-
fakes are occurred in the entire video or audio unit.

Existing Benchmarks of Deepfake Detection. The evo-
lution of deepfake detection has been highlighted by key
benchmarks, summarized in Table 1, including DFDC [Dol-
hansky et al., 2020], KoDF [Kwon et al., 2021], and
FakeAVCeleb [Khalid et al., 2021b]. However, in response
to the increasing complexity of deepfake techniques, they are
showing obvious limitations. Existing benchmarks only in-
volve scenarios where deepfakes are applied to every frame
within the video, which cannot fully represent various real-
world applications, where deepfakes can be applied to spe-
cific segments of the video. They also lack attention to del-
icate manipulations, such as minor changes in facial expres-
sions or specific features. Although KoDF and FakeAVCeleb
have attempted to incorporate culturally specific representa-
tions and audio-visual elements, the problem of detecting par-
tial deepfakes remains unresolved.

3 Methodology
3.1 FakeMix
To mitigate constraints in existing benchmarks, our work in-
troduces a new benchmark FakeMix, a novel clip-level assess-
ment technique for evaluating the robustness and generaliza-



Table 2: Comparison of the performance of deepfake detection models on the established deepfake benchmark, FakeAVCeleb and the pro-
posed benchmark, FakeMix.

Benchmark Model Modality Task Acc TA FDM
FakeAVCeleb Xception [Khalid et al., 2021b] A video-level 0.7306 - -

FakeMix Xception [Khalid et al., 2021b] A clip-level - 0.5905 0.6018
FakeAVCeleb Xception [Khalid et al., 2021b] V video-level 0.7626 - -

FakeMix Xception [Khalid et al., 2021b] V clip-level - 0.5060 0.5034

FakeAVCeleb AVAD [Feng et al., 2023] A-V video-level 0.9420 - -
FakeMix AVAD [Feng et al., 2023] A-V clip-level - 0.5312 0.5212

tion of multimodal deepfake detection. FakeMix is designed
to address sophisticated scenarios where deepfakes are ran-
domly applied to specific segments of the video and audio, of-
fering more realistic conditions and emphasizing multimodal
alignment to enhance interpretability of deepfake detection
models. Unlike previous benchmarks, as depicted in Figure 1,
FakeMix incorporates random segment insertions in clips by
manipulating both video and audio within one-second inter-
vals to measure the adaptability of multimodal deepfake de-
tection models.

3.2 Generation and Description of FakeMix
As shown in Figure 1, let Vr = {vr1, vr2, . . . , vrn} and
Vf = {vf1, vf2, . . . , vfm} represent the sets of clips from
Real Video and Fake Video, respectively, where vri and
vfi denote the i-th clip in each set. Similarly, let Ar =
{ar1, ar2, . . . , arn} and Af = {af1, af2, . . . , afm} repre-
sent the sets of clips from Real Audio and Fake Audio, re-
spectively, where ari and afi represent the i-th clip in each
set. To create a FakeMix video sequence V , we randomly
select clips from either Vr or Vf and concatenate them. Sim-
ilarly, to create a FakeMix audio sequence A, we randomly
select clips from either Ar or Af and concatenate them as
follows:

• Randomly selecting clips for the video sequence:

V = {vij | vij ∈ Vr ∪ Vf} (1)

• Randomly selecting clips for the audio sequence:

A = {aij | aij ∈ Ar ∪Af} (2)

Here, i and j denote the indices of the selected clips from the
respective sets.

Consequently, within FakeMix, the videos are categorized
at the clip-level as Real or Fake for both video and audio.
Hence, the generated videos by FakeMix can be utilized to
determine the segments within a video where deepfake ma-
nipulation occurs in both video and audio components.

3.3 Evaluation Metrics for FakeMix
As illustrated in Figure 2, we employ two novel metrics de-
signed to offer a more granular analysis of deepfake detection
capabilities: Temporal Accuracy (TA) and Frame-wise Dis-
crimination Metric (FDM). These metrics allow us to assess
the effectiveness of deepfake detection at the individual frame
level, which is critical for identifying and comprehending the
temporal dynamics of deepfake manipulations.
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Figure 2: Comprehensive overview of Temporal Accuracy and
Frame-wise Discrimination Metric conducted on the Fakemix.

Temporal Accuracy (TA)
TA is a metric utilized to gauge the frame-level precision of
deepfake detection models in predicting the authenticity of
each frame within a video. This metric is defined as:

TA =
1

N

N∑
i=1

 1

Fvi

Fvi∑
j=1

I(ŷij = yij)

 , (3)

where N is the number of videos, Fvi is the total number of
frames in the i-th video, ŷij is the predicted label for the j-th
frame of the i-th video, yij is the ground truth, and I is the
indicator function which is 1 if the predicted label equals the
ground truth and 0 otherwise.

Frame-wise Discrimination Metric (FDM)
To complement TA, we introduce the FDM, which assesses
the model’s discrimination accuracy over the entire dataset at
the frame level. It is expressed as:

FDM =

∑N
i=1

∑Fvi
j=1 I(ŷij = yij)∑N
i=1 Fvi

, (4)

In this equation, N represents the number of videos, and
Fvi signifies the count of frames within the i-th video. Here,
I(ŷij = yij) computes the correctness of predictions at the
individual frame level.

These metrics are pivotal as they provide a detailed under-
standing of a model’s ability to discern real and fake content
at a granular level, echoing the need for sophisticated evalua-
tion in the age of advanced deepfakes. With TA and FDM, we



aim to establish a standard that can effectively measure and
guide the development of next-generation deepfake detection
models.

4 Experiments
The difference in evaluation results between FakeAVCeleb,
which evaluates the models at the video level, and FakeMix,
which evaluates at the clip level, demonstrates that FakeMix
is more suitable for assessing the robustness and generaliza-
tion of deepfake detection models.

4.1 Experimental Settings
As shown in Table 2, we first conducted an experiment to
identify the differences in evaluation methodologies within
a single modality by assessing the same model across each
dataset. During this experiment, we utilized the Xception
model previously used by [Khalid et al., 2021b], and main-
tained consistent data preprocessing and hyperparameter set-
tings.

Subsequently, we evaluated the robustness of the AVAD
model, as proposed by [Feng et al., 2023], across different
modalities by testing it on each dataset. Data preprocessing
for the FakeAVCeleb dataset, which contains longer video se-
quences, involved using sequences of length N = 50 from
2.0-second videos. In contrast, for the shorter 1-second clips
of the FakeMix dataset, we adjusted the sequence length to
N = 50 from 1.0-second videos. To address the reduced
video duration, we scaled the probability scores output by the
AVAD model, considering scores of 0.5 or higher as indica-
tive of fakes. This scaling was critical for accurate compu-
tation of True Acceptance (TA) and False Detection Metrics
(FDM). Aside from these dataset-specific preprocessing mod-
ifications, all other experimental settings conformed to those
outlined by [Feng et al., 2023].

4.2 Results
In the FakeAVCeleb benchmark, which tests video-level clas-
sification, the Xception model achieves approximately 76%
accuracy. Meanwhile, another model, AVAD, reaches a
higher accuracy of 94% in the same video-level classifica-
tion on FakeAVCeleb. However, in the FakeMix benchmark,
which tests clip-level classification, both Xception and AVAD
models show a reduction in accuracy to around 50-60%. No-
tably, while the Xception model demonstrated lower perfor-
mance than AVAD at the video level, it outperforms AVAD in
clip-level performance.

The experimental results indicate that video-level classifi-
cation often leads to overestimation, as the entire video is la-
beled as deepfake even if only a portion of the video contains
manipulated content. Therefore, evaluating deepfake detec-
tion models at the clip or frame level is crucial to accurately
verify their effectiveness. Our proposed evaluation metrics
offer a more significant understanding and interpretability in
deepfake detection, enabling precise identification of manip-
ulated segments within contents. This approach enhances the
reliability and applicability of deepfake detection models in
practice.

5 Conclusion
The surge in hyper-realistic deepfake techniques has raised
concerns about the authenticity of video and audio content.
However, existing multimodal deepfake benchmarks often
overlook specific manipulated segments, resulting in inflated
detection accuracy and a lack of insight. To address this ex-
aggerated efficacy, we introduced FakeMix, a clip-level eval-
uation benchmark that enhances interpretability by targeting
manipulated video-audio segments. Additionally, our pro-
posed evaluation metrics, TA and FDM, effectively assess the
robustness and reliability of deepfake detection methods. By
rethinking the overall assessment framework, these findings
which highlight the importance of adopting clip-level assess-
ments and refined evaluation metrics, lay the groundwork for
more comprehensive and accurate deepfake detection strate-
gies to combat deceptive content.
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