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Abstract. The LUNA25 challenge focuses on the binary classification
of lung nodules as malignant or benign from chest CT scans. This task
is critical for early lung cancer detection and treatment planning. Our
approach builds upon a multi-scale multiple instance learning (MIL)
framework, wherein each volume of interest (VOI) is treated as a bag
of instances to effectively account for spatial ambiguity in both the lo-
calization of pathological structures and the distribution of malignancy-
associated evidence. This formulation not only enables robust learn-
ing under weak supervision but also enhances interpretability by pro-
viding spatially resolved malignancy evidence across the VOI. To im-
prove generalization, we adopt a curriculum learning strategy: pretrain-
ing on LIDC-IDRI dataset with multi-attribute nodule analysis, fol-
lowed by fine-tuning on LUNA25 for malignancy prediction. Our fi-
nal ensemble achieved an AUROC of 0.9366 on the Open Development
Phase Leaderboard. Code is available at: |https://github.com/chpark-
ML /luna25-challenge,
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1 Introduction

Lung cancer remains one of the leading causes of cancer-related mortality world-
wide, and early detection plays a critical role in improving patient outcomes.
Computed tomography (CT) of the chest has become a cornerstone in the screen-
ing and diagnosis of pulmonary nodules, which may serve as early indicators of
malignancy. However, accurately distinguishing malignant nodules from benign
ones remains a challenging task due to the high variability in nodule appearance
and overlapping radiographic features.

The LUNA25 challenge E| addresses this problem by focusing on the binary
classification of lung nodules—determining whether a given nodule is malignant
or benign—using volumetric chest CT scans. Specifically, each case consists of
a chest CT volume along with the 3D coordinates of a nodule center. Based
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on this information, a volume of interest (VOI) is extracted around the speci-
fied location, and the objective is to predict the malignancy of the nodule con-
tained within the VOI. The dataset provided for this challenge, the LUNA25
dataset, comprises expertly annotated CT scans with rich spatial and semantic
information about lung nodules, offering a valuable benchmark for algorithmic
development.

Our approach is motivated by the clinical observation that radiologists do not
rely solely on the appearance of the nodule itself, but also incorporate surround-
ing anatomical context and integrate both coarse and subtle radiographic cues
when making malignancy assessments. To emulate this multi-faceted diagnostic
process, we adopt a multi-scale multiple instance learning (MIL) framework that
models each VOI as a bag of instances sampled at different spatial scales. This
formulation not only enables the model to capture both localized and contextual
malignancy evidence, but also facilitates interpretability by providing spatially
resolved predictions that highlight diagnostically relevant regions across the vol-
ume.

In addition, we incorporate transfer learning from a model pretrained on
the LIDC-IDRI dataset through auxiliary tasks such as nodule attribute clas-
sification and segmentation. This pretraining enables the model to learn rich
morphological representations of physical nodules, including shape, margin, tex-
ture, and spatial context, thereby providing a strong inductive prior for down-
stream malignancy classification. The pretrained model is then fine-tuned on
the LUNA25 dataset through a curriculum-based learning strategy, allowing for
gradual adaptation to the malignancy prediction task.

Model classification performance is primarily evaluated using the Area Un-
der the Receiver Operating Characteristic Curve (AUROC), a widely adopted
metric for binary classification, particularly in medical imaging contexts where
both sensitivity and specificity are critical. Our method demonstrates strong
predictive performance, highlighting its potential for aiding in early lung cancer
detection.

Problem Statement

Let X = {x;}¥ | denote a set of input samples, where each x; corresponds to a 3D
VOI extracted from a chest CT scan. In typical clinical and algorithmic settings,
a full CT image volume along with the spatial coordinates of a lung nodule are
provided. Given this information, a VOI of fixed size—centered at the annotated
nodule location—is extracted and used as the input z;. Each z; contains a single
annotated nodule and is associated with a binary label y; € {0,1}, where y; =1
indicates a malignant nodule and y; = 0 indicates a benign one. The goal is to
learn a predictive function:

Jo: X —10,1],

parameterized by 6, that assigns to each input volume z; € X a malignancy
probability §; = fo(z;), quantifying the likelihood that the nodule present in x;
is malignant.
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Fig. 1. Overall architecture of our proposed method.

2 Method

2.1 Multi-scale Multiple Instance Learning

Bag-of-Local-Features The proposed architecture adopts a MIL formulation,
where each VOI is treated as a bag of spatially localized feature vectors. As
illustrated in Figure [I} our model is built upon a 3D U-Net backbone that ex-
tracts multi-level feature maps {F1, Fa, F3} from different stages of the encoder.
These feature maps correspond to increasingly larger receptive fields, thereby
capturing local information at fine, intermediate, and coarse spatial resolutions.

Each feature map F; (I € {1,2,3}) consists of a grid of feature vectors that
represent semantic embeddings of 3D patches across the spatial extent of the
VOI. Specifically, F; encodes texture-level and edge-level details from small
receptive fields, whereas Fy and Fj3 progressively capture more abstract and
contextual representations. These spatially distributed vectors are treated as in-
dividual instances within the MIL framework, allowing the entire VOI to be
modeled as a bag of heterogeneous, scale-specific local descriptors.

This formulation enables the network to learn fine-grained and context-aware
malignancy patterns without requiring pixel-wise or voxel-level annotations. It
also supports learning under weak supervision, leveraging the assumption that at
least one instance within the bag (i.e., the VOI) may contain diagnostic evidence
of malignancy.

Attention Gate Modules To enhance spatial awareness and selective feature
encoding, we incorporate multi-scale attention gating mechanisms guided by
anatomical priors. Given that the nodule center is known and lies near the center
of the VOI, absolute positional information is a valuable cue for malignancy
assessment. Therefore, we explicitly encode spatial coordinates into the attention
module, allowing the model to attend to regions that are both semantically
relevant and anatomically plausible.
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Feature extraction is conducted via multi-scale 3D convolutions, producing
hierarchical feature maps that are fused through a Feature Pyramid Network
(FPN). The FPN aggregates semantic information from coarse to fine resolu-
tions, enabling input-dependent spatial discrimination. At each resolution level
[, an attention gating module generates a spatial weight map G;, which reflects
the estimated discriminativeness of each local region within the feature map F;.

The gated representations G1, G, and Gg serve as instance-level importance
scores across different spatial scales, forming the basis for stochastic instance
selection in the pooling stage.

Attention-Gated Pooling Final malignancy prediction is derived by aggregat-
ing instance-level predictions across all spatial locations in a weighted manner
guided by attention. Each local feature vector in F; is independently passed
through a shared lightweight classifier to produce a logit value, resulting in a
dense logit map over the VOI.

These logits are then aggregated via attention-gated pooling, where each logit
is weighted by its corresponding gating score G;. Since the final malignancy score
is computed as a linear combination of spatially localized logits and attention
weights, the model’s decision can be explicitly attributed to specific regions
within the VOI.

This formulation enables spatial interpretability: the combination of F; and
G, directly defines the contribution of each spatial location to the final pre-
diction, effectively exposing localized malignancy evidence. By performing this
weighted aggregation across multiple scales, the model integrates complemen-
tary diagnostic cues while preserving spatial coherence. The resulting scalar
output represents a soft, interpretable fusion of local predictions under the MIL
paradigm.

2.2 Three-Phase Curriculum Learning Framework

To effectively address the challenges posed by limited supervisory signals and
inter-scan heterogeneity in pulmonary nodule malignancy classification, we pro-
pose a structured three-phase curriculum learning framework. This paradigm
organizes the training process from fundamental morphological attribute learn-
ing to higher-order diagnostic reasoning, thereby enabling the network to pro-
gressively acquire transferable inductive priors before specializing on the final
malignancy prediction task.

Phase 1: Morphological Prior Induction through Multi-Attribute Pre-
diction and Segmentation Supervision In the initial phase, we pretrain the
model using the LIDC-IDRI dataset [I], which provides expert-annotated de-
scriptors of pulmonary nodule morphology. The pretraining is formulated as
a multi-task learning problem encompassing nine clinically relevant attributes:
malignancy, subtlety, sphericity, lobulation, spiculation, margin, texture, calci-
fication, and internal structure. To encourage the emergence of disentangled,
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attribute-specific representations, distinct classification heads are attached to the
backbone for each attribute. Concurrently, an auxiliary segmentation branch is
jointly optimized using binary nodule masks, compelling the network to capture
boundary-aware and spatially localized features. This stage facilitates the acqui-
sition of robust semantic priors that are fundamental for subsequent malignancy
reasoning.

Phase 2: Cross-Cohort Joint Learning for Malignancy Discrimina-
tion Leveraging the pretrained representations from Phase 1, the model un-
dergoes a joint learning procedure utilizing both the LIDC-IDRI and LUNA25
datasets. This phase is designed to enhance the network’s ability to discriminate
between benign and malignant nodules while improving robustness to domain
shifts caused by heterogeneous imaging conditions, such as variations in scanner
hardware, reconstruction protocols, and labeling policies. The joint optimiza-
tion is formulated as an end-to-end binary malignancy classification task, where
samples from both datasets are simultaneously integrated during training. This
multi-cohort learning paradigm enables the acquisition of domain-invariant yet
highly discriminative feature representations, thereby improving generalization
across diverse clinical settings and preparing the model for task-specific fine-
tuning in Phase 3.

Phase 3: Concept-Level Fine-Tuning on LUNA25 In the final stage, the
model undergoes concept-level fine-tuning on the LUNA25 dataset, whose anno-
tation schema is closely aligned with the target malignancy classification task.
During this phase, all network parameters remain trainable, enabling the model
to holistically adapt both low-level morphological features and high-level di-
agnostic abstractions. This comprehensive optimization ensures that the final
predictor is fully aligned with the labeling semantics and evaluation metrics de-
fined by the LUNA25 benchmark, thereby achieving task-specific performance
fidelity.

3 Experiments

3.1 Datasets and Preprocessing

To standardize input representations and emphasize diagnostically salient re-
gions, we implemented a structured preprocessing pipeline for all CT volumes.
For each annotated nodule, a lesion-centered 3D patch was extracted to ensure
nodule-focused modeling. To mitigate inter-scan resolution heterogeneity, all CT
volumes were resampled to a standardized anisotropic voxel spacing of 1.0mm
(axial slice thickness) and 0.67mm (in-plane pixel size along both y- and x-axes).
Intensity normalization was performed via DICOM windowing to enhance soft-
tissue contrast and highlight pulmonary structures.

For training and evaluation, we adopted a 7-fold stratified cross-validation
protocol to ensure robust generalization while preserving class balance across
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folds. An independent model was trained on each fold. Final predictions were
obtained via an ensemble in which fold-wise outputs were combined using a
average.

3.2 Implementation Details

Phase 1: Morphological Prior Induction. The network was pretrained on
the LIDC-IDRI dataset, where supervision was provided through nine attribute-
classification tasks (malignancy, subtlety, sphericity, lobulation, spiculation, mar-
gin, texture, calcification, and internal structure) alongside an auxiliary nodule
segmentation task. For this stage, only CT scans with a slice thickness of 3.5mm
or less were utilized, and training and validation were restricted to nodules anno-
tated by at least two independent radiologists. Each attribute score was mapped
to a continuous scale of 0-1, and the averaged score across the annotating radiol-
ogists was used as the annotation. Segmentation masks were prepared according
to a 50% consensus rule, where a voxel was included in the mask if at least
half of the annotating radiologists marked it as part of the nodule. This setup
encouraged the development of disentangled, attribute-specific representations
while capturing boundary-aware features essential for semantic understanding.

Phase 2: Cross-Cohort Joint Learning. Building on the pretrained repre-
sentations, the model was jointly trained on both the LIDC-IDRI and LUNA25
datasets to enhance binary malignancy discrimination. For the LIDC-IDRI sub-
set, only nodules annotated by at least three radiologists were included to ensure
higher annotation reliability. The malignancy score for each nodule was obtained
by mapping individual radiologists’ ratings to a 0-1 scale and averaging them
to form the final annotation. This phase aimed to mitigate inter-dataset domain
shifts caused by scanner variability and differing annotation policies. Samples
from both datasets were jointly optimized in an end-to-end classification task,
enabling the model to learn domain-invariant yet discriminative features for ma-
lignancy prediction.

Phase 3: Concept-Level Fine-Tuning. Finally, the model was fine-tuned
on the LUNA25 dataset, aligning the network with the target malignancy clas-
sification objectives. During this phase, all layers were unfrozen to permit full
adaptation of both low-level morphological features and high-level diagnostic
reasoning.

Optimization We employed the AdamW optimizer with a weight decay of
1x 1073 and utilized a one-cycle learning rate policy with cosine annealing, where
the learning rate was increased during the first 20% of training and decayed
thereafter. The batch size was fixed at 32, and gradient norms were clipped to a
maximum of 1.0 to maintain training stability. An exponential moving average of
model parameters was maintained throughout training to stabilize convergence
and improve generalization.
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To ensure stable training of the gate network and to encourage effective
discovery of class evidence across multiple feature levels, an auxiliary loss was
introduced and jointly optimized with the main objective.

For each training phase, the maximum learning rate and training duration
were configured as follows:

Phase 1: 200 epochs with a maximum learning rate of 1 x 1073,

Phase 2: 100 epochs with a maximum learning rate of 1 x 1074,

Phase 3: 50 epochs with a maximum learning rate of 1 x 107°.

4 Conclusion

In this work, we proposed a robust and interpretable framework for lung nod-
ule malignancy classification, developed for the LUNA25 challenge. Our ap-
proach uses a multi-scale MIL architecture with 3D convolutional backbones
and attention-based instance selection to capture spatially distributed malig-
nancy evidence without dense annotations.

A key component of our approach is the incorporation of a three-phase cur-
riculum transfer learning strategy. In the first phase, the model undergoes multi-
attribute pretraining on the LIDC-IDRI dataset with auxiliary segmentation su-
pervision, enabling the acquisition of robust morphological priors. In the second
phase, a cross-cohort joint learning stage is performed on both the LIDC-IDRI
and LUNA25 datasets, enhancing malignancy discrimination and improving ro-
bustness to inter-dataset domain shifts. Finally, in the third phase, the model
is fine-tuned on the LUNA25 dataset to fully align with the target malignancy
classification task. This progressive training paradigm facilitates improved gen-
eralization, data efficiency, and convergence while enabling the network to grad-
ually evolve from low-level morphological understanding to high-level diagnostic
reasoning.

Overall, our findings emphasize the importance of combining domain-specific
knowledge with structured learning strategies for interpretable and accurate pul-
monary nodule assessment. Our final ensemble model achieved an AUROC of
0.9366 on the Open Development Phase Leaderboard, demonstrating the effec-
tiveness of the proposed framework.
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