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ABSTRACT
The emergence of hyper-realistic deepfake videos has raised signif-
icant concerns regarding their potential misuse. However, prior re-
search on deepfake detection has primarily focused on image-based
approaches, with little emphasis on video. With the advancement
of generation techniques enabling intricate and dynamic manip-
ulation of entire faces as well as specific facial components in a
video sequence, capturing dynamic changes in both global and local
facial features becomes crucial in detecting deepfake videos. This
paper proposes a novel sequential attentive face embedding, SAFE,
that can capture facial dynamics in a deepfake video. The proposed
SAFE can effectively integrate global and local dynamics of facial
features revealed in a video sequence using contrastive learning.
Through a comprehensive comparison with the state-of-the-art
methods on the DFDC (Deepfake Detection Challenge) dataset and
the FaceForensic++ benchmark, we show that our model achieves
the highest accuracy in detecting deepfake videos on both datasets.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; • Secu-
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1 INTRODUCTION
The emergence of advanced deepfake generation techniques [25]
(e.g., Face2Face [38], FaceSWAP [19], Face-Forensics [29]) has opened
up new possibilities in various domains, including film and health-
care, by enabling the visualization of concepts, which have been
challenging so far. However, the misuse and malicious applications
of deepfake technology, such as impersonating someone in online
interviews [26] or creating pornographic videos by superimposing
the faces of celebrities [41], have raised significant social concerns.

Hence, there have been great efforts on deepfake detection us-
ing deep learning techniques [3, 8, 33, 36, 45]. So far, most of prior
deepfake detection methods have primarily focused on image-based
approaches [2, 13, 45], detecting deepfake in a given image or in
a snapshot of a given video. To identify the unnaturalness shown
in a deepfake image or a frame in a video, either local facial fea-
tures (i.e., detailed information about specific facial regions such
as facial landmarks or organs) [9, 21, 23, 32] or global facial fea-
tures (i.e., overall appearance and structure of the face represented
as a vector) [22, 24, 27, 42] have been utilized. However, with the
advancement of video generation techniques, deepfake videos can
have various and frame-by-frame manipulations, ranging from sub-
tle changes in specific facial components to entire face swaps [21].
Here, relying solely on global or local facial features may not cap-
ture sequential dynamics across frames in a video [18].

To address this issue, we propose a novel sequential-attentive
face embedding, SAFE, that can capture the temporal dynamics of
video frames for detecting deepfake videos. The proposed model
introduces a cross-attention mechanism for combining global and
local facial features across multiple frames in a video. For high-
lighting the difference between fake and real videos, we apply
contrastive learning [5, 39], which has been used for detecting
fake images by assessing the similarity between manipulated and
original images [11, 12, 31]. Specifically, we extend to leverage con-
trastive learning in deepfake video detection by integrating the
frame-by-frame and cross-attentive global and local facial features.

The proposed model, SAFE, was evaluated on popular deepfake
video datasets, DFDC (Deep Fake Detection Challenge) and Face-
Forensic++, and outperforms other state-of-the-art methods. An
ablation study highlights that incorporating both global and local
facial features achieved through leveraging contrastive learning
improves performances compared to using a single feature alone.
To the best of our knowledge, this is the first attempt to leverage the
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Figure 1: Facial feature extraction process for detecting deep-
fake videos.

temporal dynamics of global and local facial features for detecting
deepfake videos.

2 METHODOLOGY
2.1 Deepfake Video Dataset
Deepfake Detection Challenge Dataset (DFDC): To train and
evaluate the deepfake detection models, we use the Facebook AI
Deepfake Detection Challenge Dataset [10] 1. The dataset includes
125,736 total clips obtained from 3,426 paid actors and was manip-
ulated through diverse DeepFake and GAN-based face-swapping
techniques. Due to GPU resource constraints, we randomly selected
45,801 clips from a total of 125,736 clips for training models. We
used the same validation set consisting of 4,000 clips and the same
test set with 5,000 clips, provided by the DFDC for evaluation.
FaceForensic++: To validate whether the proposed method is gen-
erally applicable, we use FaceForencis++ [29] (an extend version of
FaceForensics [28]) in our experiments. The FaceForensic++ dataset
consists of 1000 original videos from YouTube and 4000manipulated
videos created through different forgery methods (e.g., DeepFake 2,
FaceSwap 3, Face2Face [38], and NeuralTexture [37]). Among them,
we use the DeepFakes category, which includes 1000 manipulated
videos and 1000 original videos, for our analysis.

1https://ai.facebook.com/datasets/dfdc
2https://github.com/deepfakes/faceswap
3https://github.com/MarekKowalski/FaceSwap/
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Figure 2: Overall architecture of sequential attentive face
embedding. (FR = Facial Representations as a global facial
feature, FL = Facial Landmarks as a local facial feature)

2.2 Facial Feature Extraction
Figure 1 illustrates the overall feature extraction process. The given
video clip 𝐶 is first split into seconds using the OpenCV [4] video
capture function. Since the duration (𝐷) varies across video clips,
we obtain 𝑁 frames {𝑐1, 𝑐2, · · · , 𝑐𝑁 }, where 𝑁 = 𝐷 × 𝑡 (𝐹𝑃𝑆). To
ensure consistency, we set 𝑡 = 1 (one frame per second = 1 FPS).
We then detect a face in each frame 𝑐 ∈ {𝑐1, 𝑐2, · · · , 𝑐𝑁 } and per-
form center-cropping to obtain a cropped face region with a size
of 128 x 128 pixels. In cases where a face is not detected, we re-
place it with zero-vectors. As a result, we obtain a (𝑁 , 128, 128, 3)
shape of cropped facial images. To extract global facial feature,
we employ an Inception-V3-based [6] encoder. Initially, we extract
128-dimensional feature vectors for each cropped face image using
the weight-sharing encoder. These feature vectors are then con-
catenated to form a global facial feature with dimensions 𝑁 × 128.
For local facial feature, we leverage Dlib [16], a widely-used
open-source software for facial analysis. This landmark predictor
extracts 68 facial landmarks in each center-cropped face image,
which are then fed into the landmark localizer. The landmark local-
izer further categorizes the 68 facial landmarks into seven distinct
facial organs based on their (𝑥,𝑦) coordinates: jaw ([0:17]), right
eyebrow ([17:22]), left eyebrow ([22:27]), nose ([27:36]), right eye
([36:42]), left eye ([42:48]), and mouth ([48:68]). By zero-padding
and concatenating each 𝑥 and 𝑦 coordinates, our generated local
facial feature exhibits a shape of 𝑁 × 7 × 40.
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Figure 3: SAFE with contrastive learning.

2.3 Sequential Attentive Face Embedding (SAFE)
To capture global and local frame-by-frame characteristics of each
video, we propose sequential attentive face embedding (SAFE), as
shown in Figure 2. For representing facial representation (𝐹𝑅) as
a global feature and facial landmarks (𝐹𝐿) as a local feature, we
use two separate temporal LSTM (long short-term memory [14])
modules. These modules are designed to capture sequential pat-
terns present in a given video sequence. We then introduce a cross-
attention mechanism [44] with ℎ multi-heads that can jointly con-
sider FR and FL, capturing mutual information between them. The
cross-attention mechanism is defined by Equations 1 and 2, where
𝑄 , 𝐾 , 𝑉 , and𝑊 represent the query, key, value, and a learnable
parameters weight matrix, respectively.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑 (𝑄,𝐾,𝑉 ) = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ..., ℎ𝑒𝑎𝑑ℎ)𝑊 (1)

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄

𝑖
, 𝐾𝑊𝐾

𝑖 ,𝑉𝑊
𝑉
𝑖 ) (2)

We set 𝑄 = 𝐹𝑅 and 𝐾 = 𝑉 = 𝐹𝐿 for contextual extraction from
FL and incorporate it into FR (𝐹𝑅 → 𝐹𝐿). An opposite alignment
strategy (𝐹𝐿 → 𝐹𝑅) was applied to obtain latent information from
both directions. By concatenating these two representations, the
model comprehends the mutual dependencies between FR and FL,
which provide a deeper comprehension of a video from both global
and local perspectives. For single usage of FR or FL, cross-attention
shifts to self-attention. In the final stage, the Deepfake Detector
in SAFE incorporates fully connected layers, dropout layers with
𝑝 = 0.4, and softmax activation functions to classify whether a
given video is real or fake.

2.4 SAFE with Contrastive Learning
For highlighting the difference between fake and real videos, we
apply contrastive learning [5, 39] in SAFE as illustrated in Figure 3.
We use 𝑍1 and 𝑍2 in Figure 2, which can be obtained before the
concatenation for the final fusion representation. Initially, we feed
𝑍1 and 𝑍2 through a projection head, which consists of multiple
linear layers. This step enables the transformation of the input

vectors into a suitable representation for contrastive learning. To
measure the similarity between projected 𝑍1 and 𝑍2, we use the
cosine similarity as the loss function as follows:

𝑠𝑖𝑚(𝑍1, 𝑍2) =
𝑍1 · 𝑍2

∥𝑍1∥2 · ∥𝑍2∥2
(3)

We employ the categorical cross-entropy as a loss function, which
enables effective backpropagation by leveraging contrastive loss as
follows:

𝐿𝑜𝑠𝑠 (𝑧𝑖 , 𝑧 𝑗 ) = − log
𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 ))∑2
𝑘=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑘 ))

(4)

𝐿 = 𝐿𝑡𝑎𝑠𝑘 + 𝐿𝑜𝑠𝑠 (𝑍1, 𝑍2) + 𝐿𝑜𝑠𝑠 (𝑍2, 𝑍1) (5)
where 𝐿𝑡𝑎𝑠𝑘 represents the classification task of distinguishing
between fake and real videos.

3 EXPERIMENTS
3.1 Experimental Settings
The proposed model and baselines are trained using Adam [17]
optimizer, with a learning rate 0.001. In addition, we set the dropout
and epochs to 0.4 and 100, respectively. Note that all weights are
randomly initialized in the proposed and baseline models. We eval-
uate the deepfake detection performance based on the following
three metrics: accuracy, precision, and recall.

Baselines: For comparing the proposed models and baselines
on DFDC, we choose the eight popular methods that are known
as accurate in deepfake detection [20, 22, 27, 40, 47]: (i) Efficient-
NetB5 [35], (ii) Ensemble of CNNs [3], (iii) TD-3DCNN [46], (iv)
Xception [6], (v) InceptionV3 [34], (vi) MesoInception [1], (vii)
Conv-LSTM [13], and (viii) Conv-LSTM +MTCNN [27]. For eval-
uation on FaceForensic++, we choose the three high-performing
methods on DFDC from Table 1 : (i) Xception [6], (ii) MesoIncep-
tion [1], and (iii)Conv-LSTM [13]. In addition, we further evaluate
four high-performing methods [29, 45] on FaceForensic++: (i) CNN
+ GRU + STN [30], (ii) Face X-ray [22], (iii) FaceCatcher [7], and
(iv) Local CNN [36].
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Table 1: Overall performance of the proposed model and the
baselines on DFDC. (FR = Facial Representations, FL = Face
Landmarks, CL = Contrastive Learning)

Method Input Accuracy Precision Recall

FR 0.842 0.838 0.657
EfficientNetB5 [35] FL 0.849 0.898 0.825

Both 0.876 0.819 0.865

FR 0.869 0.867 0.880
Ensemble of CNNs [3] FL 0.836 0.783 0.865

Both 0.881 0.900 0.895

FR 0.872 0.869 0.882
TD-3DCNN [46] FL 0.828 0.743 0.906

Both 0.885 0.905 0.878

FR 0.872 0.889 0.868
Xception [29] FL 0.840 0.904 0.797

Both 0.913 0.901 0.910

FR 0.873 0.901 0.860
InceptionV3 [34] FL 0.864 0.850 0.883

Both 0.905 0.910 0.904

FR 0.884 0.874 0.899
MesoInception [1] FL 0.867 0.876 0.869

Both 0.915 0.913 0.904

FR 0.876 0.905 0.862
Conv-LSTM [13] FL 0.848 0.898 0.825

Both 0.886 0.905 0.878

FR 0.888 0.908 0.879
Conv-LSTM + MTCNN [27] FL 0.882 0.876 0.894

Both 0.906 0.931 0.892

FR 0.898 0.908 0.879
SAFE FL 0.882 0.876 0.940

Both 0.931 0.911 0.921

Conv-LSTM [13] with CL Both 0.916 0.921 0.897

MesoInception [1] with CL Both 0.929 0.934 0.913

SAFE with CL Both 0.957 0.954 0.927

3.2 Experimental Results
3.2.1 Overall Performance. We evaluate the performance of the
proposed model on DFDC, comparing it with the eight baseline
methods. As shown in Table 1, our proposed method, SAFE, out-
performs other baselines. The result indicates that the proposed
cross-attention mechanism is effective in integrating local facial in-
formation and global high-level information in detecting deepfake
videos. Among the baseline models, Xception [6] and MesoIn-
ception [1] show high performance; MesoInception prioritizes the
extraction of mesoscopic image features [15], which lies in between
high- and low-level features. This indicates that mesoscopic features
can be useful in detecting deepfake videos [43].

3.2.2 Analysis on Feature Importance. To assess the significance of
each feature (i.e., face representations and landmarks) in detecting
deepfake videos, we conduct a performance analysis on models
trained with each feature. As shown in Table 1, most models, includ-
ing the baselines and SAFE, trained only with facial representations,
exhibit a higher performance than those trained only with face land-
marks. This suggests that high-dimensional latent representations
are more useful than detailed morphological information in deep-
fake detection. Furthermore, we find a notable improvement when
both features are well-combined through a cross-attention mecha-
nism. This implies that learning both facial representations and face

Table 2: Deepfake video detection performance on Faceforen-
sic++ (Deepfake) dataset.

Method Accuracy

CNN + GRU + STN [30] 0.969
Face X-ray [22] 0.989
FaceCatcher [7] 0.938
Local CNN [36] 0.979

Xception [29] 0.962
MesoInception [1] 0.984
Conv-LSTM [13] 0.953

SAFE 0.992
SAFE with CL 0.995

landmarks, along with their inter-dependencies, is more effective
than relying solely on a single feature.

3.2.3 Ablation Study on Contrastive Learning. We show that apply-
ing contrastive learning to SAFE shows higher performance than
SAFE w/o contrastive learning, as shown in Table 1. We also find
that high-performing baselines, Conv-LSTM and MesoInception,
also show an enhanced performance by incorporating contrastive
learning. This highlights the positive impact of contrastive learn-
ing on enhancing the comprehension and integration of multiple
representations in deepfake video detection.

3.2.4 Evaluation on FaceForensic++. To validate the generalizabil-
ity of our model to another deepfake video dataset, we conduct an
evaluation using a popular deepfake dataset, Faceforensic++. As
shown in Table 2, our proposed model, SAFE, outperforms other
state-of-the-art models and achieves an high accuracy of 0.995 on
Faceforensic++. This demonstrates the general use of the proposed
model in detecting deepfake videos.

4 CONCLUSION
In this paper, we proposed SAFE, a novel deepfake video detection
model that effectively captures temporal dynamics. SAFE employs
a cross-attention mechanism to combine global and local facial fea-
tures, enabling differentiation between fake and real videos while
utilizing contrastive learning to emphasize their distinctions. Ex-
perimental results on DFDC and FaceForensic++ demonstrated
the superior performance of SAFE compared to the state-of-the-
art methods. Furthermore, our analysis emphasizes the significant
contribution of contrastive learning in enhancing deepfake video
detection. Our work has important implications for identifying,
addressing, and preventing potential social issues arising from the
proliferation of deepfake videos.
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