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Abstract

Precise retina Optical Coherence Tomography (OCT)
image classification and segmentation are important for di-
agnosing various retinal diseases and identifying specific
regions. Alongside comprehensive lesion identification, re-
ducing the predictive uncertainty of models is crucial for
improving reliability in clinical retinal practice. However,
existing methods have primarily focused on a limited set
of regions identified in OCT images and have often faced
challenges due to aleatoric and epistemic uncertainty. To
address these issues, we propose CAMEL (Confidence-
Aware Multi-task Ensemble Learning), a novel frame-
work designed to reduce task-specific uncertainty in multi-
task learning. CAMEL achieves this by estimating model
confidence at both pixel and image levels and leveraging
confidence-aware ensemble learning to minimize the un-
certainty inherent in single-model predictions. CAMEL
demonstrates state-of-the-art performance on a compre-
hensive retinal OCT image dataset containing annotations
for nine distinct retinal regions and nine retinal diseases.
Furthermore, extensive experiments highlight the clini-
cal utility of CAMEL, especially in scenarios with mini-
mal regions, significant class imbalances, and diverse re-
gions and diseases. Our code is publicly available at:
https://github.com/DSAIL-SKKU/CAMEL.

1. Introduction
Optical Coherence Tomography (OCT) is a non-invasive

imaging method, which is renowned for its high-resolution
and three-dimensional capabilities in ophthalmology appli-
cations [32, 48]. As OCT shows notable features, including
high speed, real-time imaging, and rich information [32],
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OCT has been widely applied in monitoring the progression
of retinal diseases like diabetic macular edema (DME) or
age-related macular degeneration (AMD) [24]. With these
advantages, the development of OCT-based automated di-
agnostic systems for classification [11, 20–22, 26] and seg-
mentation tasks [23, 32, 52] has received significant atten-
tion. As image-level segmentation can be viewed as pixel-
level classification [46], multi-task learning has emerged as
a viable solution for handling both classification and seg-
mentation tasks simultaneously [38, 42]. This approach has
been validated as useful in improving performance by utiliz-
ing shared task-specific knowledge and providing clinicians
with valuable information on disease identification and re-
gion localization [37, 46]. In this way, collaborative efforts
on integrating these two objectives within a unified frame-
work have become a matter of importance [16].

Research on multi-task learning for OCT image classi-
fication and segmentation can be broadly categorized into
two approaches [46, 60]: (i) parameter sharing between
models and (ii) applying a cascaded architecture. Specifi-
cally, the parameter sharing approach improves the perfor-
mances of both tasks by finding the optimal convergence
point of each task through supervised learning [12, 33].
In contrast, the cascaded architecture approach utilizes
segmentation or classification results to guide the other
task [10, 42]. Although these approaches have led to im-
proved performance for applying to actual clinical practice,
they can be limited in that they tend to focus a small number
of regions out of an entire OCT image [32,34,51]; e.g., only
one or two regions, such as epiretinal membrane (ERM) and
intraretinal fluid (IRF) were covered in prior works [16,23].
Note that since the definition of the disease is based on en-
tire regions with different sizes and positions, a comprehen-
sive identification across various regions is essential for an
accurate diagnosis [50].
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While multi-task learning shows improved performance,
enhancing reliability and reducing uncertainty are necessary
for clinical practice as model errors can directly impact pa-
tient health [5, 36]. Since evaluating confidence levels and
quantifying predictive uncertainty can enhance model re-
liability and performance in the retinal field [29], various
efforts have been made to adapt uncertainty estimation in
retinal imaging [46, 53, 54]. However, this approach relies
on a single model, which can suffer from the inherent un-
certainty of a single model [25, 31].

To address these challenges, we introduce CAMEL

(Confidence-Aware Multi-task Ensemble Learning) to en-
hance reliability and performance in multi-task learning for
comprehensive retina OCT image classification and seg-
mentation. CAMEL employs task-specific uncertainty esti-
mation and confidence-aware ensemble learning, assessing
uncertainties at both image and pixel levels, and addressing
epistemic uncertainty inherent in single models. Specifi-
cally, weighting based on the reliability score of each model
in each task, CAMEL dynamically incorporates confidence
levels from multiple models to achieve optimal results. Fur-
thermore, we integrate adaptable individual branches for
particular diseases that require specialized analysis, thereby
improving the model’s versatility. OCT images are pre-
processed to adapt their spatial information, ensuring pre-
cise pixel matching at lesion boundaries. Unlike other im-
ages, medical images can be characterized by the defini-
tion of tissue, lesions, and organ shapes and positions [49].
Based on the well-structured spatial information, we model
the medical and geometric relationships among various le-
sions, incorporating post-processing adjustments to gener-
ate refined resized mask images.

To evaluate our proposed methods, we use a new retina
OCT dataset, suitable for multi-task learning, containing
original OCT images and masks for nine retinal regions and
nine retinal diseases, which three retina specialists manu-
ally annotate. As publicly available datasets typically con-
tain fewer than four types of regions or diseases [7, 17, 57],
utilizing a diverse range of datasets can provide valuable
insight into assessing both segmentation and classification
tasks. We also validate CAMEL with the publicly avail-
able dataset for showcasing its generalizability. Extensive
experimental evaluation demonstrates the effectiveness and
potential clinical use of our proposed methods.

2. Related Work
2.1. Multi-task learning

Many researchers have explored techniques to enhance
retinal image classification [11, 20–22, 26, 59] and segmen-
tation [23,32,52]. Taking a step further, multi-task learning,
also known as joint learning, has been proposed as an effec-
tive solution for simultaneously addressing OCT classifica-

tion and segmentation tasks [38, 42]. Research in multi-
task learning for OCT images can be broadly categorized
into two approaches [46,60]: (i) parameter sharing between
models (parallel architecture) and (ii) cascaded architecture.

Diao et al. [12] introduced cascaded multi-task learning
using dual guidance networks, employing guiding masks
for classifying Drusen and CNV and class activation maps
for segmenting these lesions. Gende et al. [16] used out-
put segmentation maps as inputs for classifying the Epireti-
nal Membrane (ERM). In the parallel architecture, Asgari et
al. [4] used a shared encoder with a multi-decoder architec-
ture for multi-task drusen segmentation, while Cao et al. [8]
integrated distance maps of retinal layer surfaces and em-
ployed task-specific attention modules to fuse segmentation
and classification features. However, these studies tend to
focus on only a few lesions and diseases and lack uncer-
tainty estimation, limiting model reliability. In this study,
we propose a model that segments nine possible lesions and
simultaneously classifies nine diseases commonly found in
OCT images. Additionally, we emphasize the significance
of conducting research based on OCT, noting the prevalence
of fundus images in retina imaging.

2.2. Ensemble learning

Ensemble learning aims to achieve better predictions by
combining multiple models [13, 41, 43]. This strategy has
been successfully applied to OCT image classification and
segmentation, enhancing performance and robustness. For
instance, some researchers have shown that ensemble learn-
ing improves retinal disease diagnosis, such as DME [27,
40,45]. Moradi et al. [40] used majority voting across multi-
ple classifiers, which take OCT scans and fundus images as
inputs, emphasizing the importance of ensemble learning in
OCT image classification. Additionally, ensemble learning
has also been shown to enhance OCT segmentation perfor-
mance [2, 9, 44]. Cazañas-Gordón et al. [9] compared three
ensemble prediction schemes—majority voting, weighted
averaging, and stacking—that aggregate the results of mul-
tiple independent classifiers. They highlighted the need for
simple and effective aggregation methods in OCT segmen-
tation, where modeling the layer structure is crucial. While
some studies have utilized ensemble learning in multi-task
pipelines [28, 30], they primarily rely on simple soft voting
of multiple CNN-based models without fully integrating en-
semble learning within a multi-task framework. To address
this, we propose CAMEL, which calculates each model’s
reliability score based on confidence and enhances classifi-
cation, segmentation, and specific disease detection through
confidence-aware ensemble predictions.

2.3. Calibration in learning

Enhancing reliability and reducing uncertainty in OCT
image classification and segmentation models is crucial for
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Figure 1. Overall architecture of our data pre-processing method.

clinical application, as model errors can directly impact pa-
tient health [5, 36]. Evaluating confidence levels and quan-
tifying predictive uncertainty can improve model reliability
and performance in retinal imaging [29]. Various efforts
have been made to incorporate uncertainty estimation in
retinal imaging. For instance, Seeböck et al. [54] proposed
Bayesian U-Net with test-time Monte Carlo Dropout (MC
Dropout) [15] for capturing epistemic uncertainty in OCT
segmentation. Sedai et al. [53] introduced uncertainty-
guided semi-supervised learning using a student-teacher ap-
proach, where the student model is updated based on the
teacher model’s uncertainty. Recently, Ren et al. [46] ex-
plored multi-task learning for image classification and seg-
mentation by utilizing pixel-wise and image-level uncer-
tainty. However, relying on a single model can lead to in-
herent uncertainty issues [25, 31]. Thus, we propose us-
ing model confidence to calculate a reliability score, which
serves as the weight in the ensemble aggregation process.
This approach aims to improve performance and reduce pre-
diction uncertainty in both classification and segmentation.
To the best of our knowledge, no previous work has applied
confidence-aware ensemble learning to retina OCT classifi-
cation and segmentation.

3. OCT Image Dataset
3.1. Data Annotation

To evaluate our method, we used spectral-domain op-
tical coherence tomography (SD-OCT) (Heidelberg Spec-
tralis, Heidelberg Engineering, Heidelberg, Germany) im-
ages from patients treated at Hangil Eye Hospital between
July 2014 and June 2021. The study focused on eyes with
conditions such as CRVO, CSC, DM, ERM, MH, wetAMD,
RAP, PCV, and Normal. Each condition included 100 pa-
tients, except CRVO, which had 110 due to image quality.
For each patient, 25 OCT images were collected, including
those taken 5 scans before and after the primary lesion area,
resulting in 2,730 images from 910 patients.

Three retinal specialists manually annotated each OCT
scan. They first reviewed a sample of images to establish
annotation guidelines, refining them iteratively to ensure
consistency. Once consensus was reached, each special-
ist annotated the images using Autodesk SketchBook on an
iPad Pro. They outlined eight lesion structures with an Ap-
ple Pencil, marking uncolored areas as background. The an-
notated structures included EpiRetinal Membrane (ERM),

Table 1. Annotated regions with their corresponding colors and
RGB values in our dataset.

Region R G B color
ERM (EpiRetinal Membrane) 255 89 0
Retina 0 236 255
IRF (IntraRetinal Fluid) 255 163 162
SRF (SubRetinal Fluid) 32 128 0
SHRM (Subretinal HyperReflective Material) 204 102 0
RPE (Retinal Pigment Epithelium) 112 0 204
PED (retinal Pigment Epithelial Detachment) 255 62 62
Choroid 204 200 0
Background 255 255 255

Retina, IntraRetinal Fluid (IRF), SubRetinal Fluid (SRF),
Subretinal HyperReflective Material (SHRM), Retinal Pig-
ment Epithelium (RPE), retinal Pigment Epithelial Detach-
ment (PED), and Choroid. As a result, the final OCT im-
age segmentation masks were nine-color images with each
specified lesion color as illustrated in Table 1.

Subsequently, one of the three retinal specialists re-
viewed all the initially annotated images to ensure that the
annotations adhered to a consistent standard. Any neces-
sary adjustments were made by the specialist at this stage
to meet the established criteria, and these adjustments were
then cross-checked by the other two retinal specialists. The
final dataset consists of 2,730 OCT images, each with a
resolution of 768 ⇥ 496, along with their corresponding
ground truth masks. Our study complied with the guide-
lines of the Declaration of Helsinki, and the research plan
was approved by the Ethics Committee of Hangil Eye Hos-
pital (IRB-21018). Due to the retrospective observational
nature of the study, the committee waived the requirement
for informed consent.

3.2. Data Pre-processing
As illustrated in Figure 1, we resize the image and post-

process the blurry boundaries between regions using the
following three steps: (1) Pixel Label Mapping, (2) Pixel
Remapping, and (3) K-Neighbor Post-Processing. In Pixel
Label Mapping, inaccurate pixels are identified by compar-
ing the pixels of the resized mask to those of the original
mask. Next, during Pixel Remapping, pixels are remapped
based on their color distance and lesion distance from each
other, considering the medical relationships between le-
sions and their class colors. Finally, in K-Neighbor Post-
Processing, adjustments are made by referencing neighbor-
ing pixels. For more details, see the supplementary material
(Section A.1).
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Figure 2. Illustration of confidence-aware ensemble learning in the proposed CAMEL method. Predictions (classification, segmentation,
detection) and predictive confidences are obtained from multiple models. The Confidence-aware Instructor calculates the reliability score
based on each model’s confidence for each task, determining the weight of each model’s prediction during ensemble learning.

4. CAMEL: Confidence-Aware Multi-task En-
semble Learning

Figure 2 illustrates the design of our proposed method,
CAMEL. CAMEL employs a multi-task learning framework
to perform segmentation, classification, and specific disease
detection simultaneously. Additionally, it enhances each
task with confidence-aware ensemble predictions.

4.1. Multi-task Learning: Classification, Segmen-
tation, and Detection

Since semantic segmentation can be considered a pixel-
level classification, we consider the multiple disease classi-
fication, legion segmentation, and specific disease detection
problems as N -class classification problems. We measure
confidence using the probability of the model’s predictions
at both the image and pixel levels [18]. Following the loss
setting introduced in [36], both Cross-Entropy loss and Dice
loss are used for training the network. Specifically, Cross-
Entropy loss (LCE) is calculated as follows:

LCE = � 1

N

NX

i=1

CX

c=1

yi,c log(p(ŷi = c|xi, ✓)), (1)

where p(ŷi = c|xi, ✓) represents the probability that image
or pixel i belongs to class c, and ŷi is the predicted class
based on the input xi and model parameters ✓. The binary
indicator yi,c denotes whether class c is the correct label for
the ith pixel or image. Since the goal is to segment nine re-
gions and classify nine diseases, the total number of classes,
C, is set to nine, making this a multi-class classification
problem. Moreover, Dice loss (LDS) is also employed to
guide the model’s parameter selection towards maximizing
the similarity with the ground truth segmentation mask:

LDS = 1�
CX

c=1

2
PN

i=1 yi,c ⇥ pi,cPN
i=1 yi,c +

PN
i=1 pi,c

, (2)

where C is the total number of classes, and N represents
the number of pixels in each mini-batch. yi,c is the binary
indicator for whether pixel i belongs to class c, and pi,c is
the predicted probability for pixel i belonging to class c.

Notably, several studies have highlighted the nega-
tive impact of Dice loss on calibration quality [6, 19],
while cross-entropy loss has been shown to provide better-
calibrated predictions and uncertainty estimations [18].
These findings emphasize the importance of combining
both losses [36]. As such, we defined the following loss
functions: Categorical Cross-Entropy for classification, a
balanced combination of Cross-Entropy and Dice loss for
segmentation, and binary Cross-Entropy for ERM detec-
tion. It is worth noting that we treated ERM detection as
a separate branch because ERM is crucial both as a le-
sion and a disease [14]. Additionally, OCT has become
the most useful single auxiliary test for diagnosing ERM,
showing higher sensitivity compared to clinical examina-
tions alone [55]. This detection branch can be adapted for
more significant or harder-to-detect diseases depending on
the clinical context.

The total loss, denoted as LMTL, is a combination of
three individual task losses, each weighted by learnable pa-
rameters as follows:

LMTL = ↵LCls + �LSeg + �LERM (3)

Here, LCls represents the classification task loss for predict-
ing one of nine diseases, LSeg represents the segmentation
task loss for classifying each pixel of medical images, and
LERM denotes the ERM detection task loss.

Each task loss is associated with pixel-level and image-
level uncertainty estimation based on the model’s confi-
dence. The task reflection ratio, ↵ and �, are learnable
parameters during the training process, while the reflection
ratio � is a pre-specified constant. These ratios control the
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Table 2. Comparison of segmentation IoU between baseline models and CAMEL.
ERM Retina IRF SRF SHRM RPE PED Choroid B.G. Mean IoU

UML [46] 0.3664 0.9438 0.2143 0.7212 0.2483 0.5876 0.3778 0.8546 0.9784 0.5882
TCCT-BP [56] 0.3294 0.9306 0.1969 0.6919 0.1587 0.5580 0.4440 0.7963 0.9567 0.5625

Attention-based U-Net [39] 0.3303 0.9358 0.4987 0.7795 0.3968 0.5598 0.6698 0.8174 0.9734 0.6624
CAMEL 0.8186 0.9439 0.8285 0.9218 0.9544 0.8558 0.9275 0.8801 0.9738 0.9005

Table 3. Comparison of classification accuracy between baseline models and CAMEL.
CRVO CSC DME ERM MH Normal PCV RAP wetAMD Total Cls.

UML [46] 0.9400 0.9459 0.9167 0.9315 0.8923 1.0000 0.8906 0.9437 0.7937 0.9175
MedViT-S [35] 0.9400 0.9189 0.9028 0.9041 0.8923 0.9516 0.9219 0.8873 0.7937 0.9007

VGG-19-based model [20] 0.8400 0.9730 0.9028 0.9041 0.8769 1.0000 0.7031 0.9296 0.6984 0.8737
CAMEL 1.0000 1.0000 0.9700 1.0000 0.8900 0.9800 1.0000 0.9900 0.2300 0.9288

contribution of each task to the overall loss, allowing the
model to optimize the performance of individual tasks. The
training process aims to find optimal values for ↵, �, and
� to enhance CAMEL’s learning and predictive capabilities
across all tasks.

4.2. Confidence-Aware Ensemble Learning

To reduce uncertainty within a single model, we imple-
ment confidence-aware ensemble learning, as illustrated in
Figure 2. We first employ n distinct Multi-Task Learning
(MTL) models, each utilizing different backbone encoders
and parameter configurations. We then assess each model’s
confidence in classification, segmentation, and detection in-
dependently using Expected Calibration Error (ECE), de-
fined as:

ECE =
1

N

MX

m=1

|acc(bm)� conf(bm)| , (4)

where N , M , and bm represent the total dataset size, the
number of bins, and the collection of predictions belonging
to the mth bin, respectively. Also, acc(bm) and conf(bm)
denote the accuracy and confidence of the mth bin, respec-
tively. Since the confidence of each task can be linked to the
uncertainty of the models at the image and pixel levels [36],
we used weighted voting in the ensemble to make the final
prediction for each task.

To elaborate, as depicted in Figure 2, the Confidence-
aware Instructor evaluates a reliability score of each task
branch based on the ECE of each model, and assigns
weights to their predictions as follows:

reliability scorem = 1� ECEmPn
i=1 ECEi

(5)

This reliability score is then used to weight the predictions
of each task (i.e., three tasks) branch for each model (i.e.,
five models) during ensemble learning. This ensures that
more reliable models have a greater influence on the final

prediction as follows:

ŷ = argmax
c

 PN
i=1 wi ⇥ pi,cPN

i=1 wi

!
(6)

where pi,c is the prediction of i-th model for class c, wi

is the weight (in this case, the reliability score) for i-th
model, and ŷ is the final ensemble prediction, calculated as
the weighted sum of individual model predictions.

5. Experimental Settings
5.1. Dataset

To evaluate our method, we utilized our dataset as ex-
plained in Section 3.1. We divided the dataset into training,
validation, and test sets in a 7:1:2 ratio. Additionally, we
evaluated the proposed model and baselines using the pub-
licly available OCT5k dataset [3]. The OCT5k dataset in-
cludes manual labels for three disease classes (AMD, DME,
and Normal for classification) and six-layer classes (ILM,
OPL-Henle, IS/OS junction, IBRPE, OBRPE, and back-
ground for segmentation) based on retinal OCT images.
We conducted experiments using all 1,672 images, splitting
them into training, validation, and test sets in a 5:1:4 ratio,
as provided by the dataset.

5.2. Baselines
To evaluate the performance of CAMEL in comparison to

baseline models, we consider three types of baseline mod-
els in retinal imaging: (i) multi-task learning, (ii) segmenta-
tion, and (iii) classification. Due to the limited availability
of multi-task models in retinal imaging, we only include
UML [46] as the multi-task learning baseline. Additionally,
we compare multi-class OCT image segmentation models:
(i) TCCT-BP [56] and (ii) Attention-based U-Net [39]. For
classification, we compare the following recent OCT im-
age classification models: (i) MedViT-S [35] and (ii) VGG-
19-based model [20]. Note that our pre-processing method
was implemented prior to applying the specified methods
for each baseline model (See Section B.1 for more details).

8933



Figure 3. Visualization of region-specific uncertainty maps generated by CAMEL’s uncertainty estimation.

Table 4. Comparison of classification accuracy, segmentation IoU, and speed (sec.) between baselines and CAMEL on the OCT5k dataset.

AMD DME Normal Total
Cls. ILM OPL-

Henles
IS/OS

junction IBRPE OBRPE B.G. Mean
IoU

Computation Time
Training Inference

MedViT-S [35] 0.6214 0.9868 0.6494 0.6636 - - - - - - - 1567.84 4.11
VGG-19-based model [20] 0.6004 1 0.6897 0.6598 - - - - - - - 388.95 1.94

TCCT-BP [56] - - - - 0.93 0.9153 0.7979 0.7719 0.9932 0.9657 0.8957 1637.10 7.96
Attention-based U-Net [39] - - - - 0.9165 0.8982 0.7819 0.7592 0.9928 0.987 0.8893 2196.07 15.20

UML [46] 0.3461 0.8421 0.6667 0.4670 0.8446 0.7944 0.6298 0.5966 0.975 0.9868 0.8045 9557.49 49.14
CAMEL-Ens 0.5679 1 0.7471 0.6507 0.8998 0.8728 0.7214 0.7002 0.9923 0.9881 0.8624 1239.96 8.25

CAMEL 0.6998 1 0.7241 0.7348 0.9482 0.9375 0.8044 0.7943 0.9980 0.9876 0.9117 1983.23 14.62

5.3. Implementation Details

CAMEL was implemented using Tensorflow [1] with
U-Net [47] as a backbone model. We employed five in-
dependently trained models for confidence-aware ensemble
learning. ResNet101, EfficientNetB0, and EfficientNetB7
were selected as the backbone encoder of the U-Net model
based on their superior performance in empirical experi-
ments. ResNet101 was employed with reflection ratios of
0.1, 0.2, and 0.5, while both EfficientNetB0 and Efficient-
NetB7 used 0.2 for the ERM detection task. The reflec-
tion ratio for the segmentation and classification tasks was
learned during training, as detailed in Section 4.1.

6. Results

6.1. Overall Performance

Table 2 shows the segmentation performances (IoU; In-
tersection over Union) of the baseline models and CAMEL.
CAMEL significantly outperformed all baselines across all
classes in the segmentation task. Notably, our model
achieved substantially higher performance on lesions re-

quiring precise and detailed segmentation, such as IRF
and SHRM. Among the baseline models, the Attention-
based U-Net [39] demonstrated the best performance in
segmenting small lesions such as IRF, SRF, SHRM, and
PED. It seems that the soft attention mechanism of this
model helped complement the insufficient information in
small lesions by assigning weights. For other regions, the
UML [46] showed the highest segmentation performance.
This highlights the importance of using a joint learning
framework and leveraging both image-level and pixel-wise
confidence scores in medical image segmentation. By com-
bining these strengths with ensemble learning, CAMEL
achieved the highest performance. Furthermore, by dedicat-
ing a separate branch to ERM, a critical lesion and disease,
the model demonstrated even greater performance improve-
ments.

The classification performances of the baseline models
and CAMEL for the predicted class labels are shown in Ta-
ble 3. CAMEL demonstrates the highest overall accuracy
in retinal disease classification compared to other baseline
models. Although our method shows lower accuracy in the
wetAMD class, this is attributed to the fact that PCV, RAP,
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Table 5. Analysis of the CAMEL components. B.G., Seg., Cls., and Det. represent Background, Segmentation, Classification, and
Detection, respectively. MTL, CA, and Ens refer to Multi-task Learning, Confidence-Aware, and Ensemble Learning. In MTL, classification,
segmentation, and detection tasks are integrated. The table presents the Dice score for each configuration.

Tasks ERM Retina IRF SRF SHRM RPE PED Choroid B.G. Total
Seg.

Total
Cls.

Total
ERM Det.

Area Ratio 0.02% 13.63% 0.39% 0.31% 0.09% 0.42% 0.43% 9.07% 75.26% - - -
Cls. - - - - - - - - - - 0.6833 -

ERM. - - - - - - - - - - - 0.7533
Seg. 0.7926 0.9616 0.6687 0.9238 0.8917 0.6110 0.8994 0.9007 0.9879 0.9700 - -

Cls.+ERM. - - - - - - - - - - 0.7667 0.8233
Cls.+Seg. 0.7751 0.9525 0.3114 0.9133 0.7229 0.5921 0.7793 0.8636 0.9821 0.9600 0.8717 -

ERM.+Seg. 0.7619 0.9472 0.3011 0.9039 0.7037 0.5983 0.7739 0.8603 0.9811 0.9569 - 0.9217
MTL 0.8192 0.9657 0.8553 0.9272 0.9236 0.6545 0.9221 0.9164 0.9895 0.9738 0.9010 0.9272

MTL+CA 0.8295 0.9707 0.8630 0.9373 0.9495 0.7186 0.9339 0.9257 0.9899 0.9866 0.9117 0.9288
MTL+Ens 0.8425 0.9732 0.8713 0.9431 0.9610 0.8261 0.9375 0.9402 0.9910 0.9872 0.9214 0.9291

MTL+CA+Ens
(CAMEL) 0.8789 0.9768 0.8610 0.9503 0.9721 0.9336 0.9593 0.9731 0.9960 0.9880 0.9288 0.9301

and wetAMD all fall under the broader category of nAMD
(neovascular Age-related Macular Degeneration). Never-
theless, CAMEL achieved higher or comparable scores in
the other classes.

6.2. Visual Results of CAMEL
Figure 3 illustrates the segmentation results produced

by CAMEL. The predictions closely match the target re-
gions, and the model effectively verifies reliability at re-
gion boundaries without overconfidence. As shown in the
“Uncertainty Map,” despite designing CAMEL to reduce
uncertainty through its confidence-aware ensemble learn-
ing, some uncertainty remains in specific locations, partic-
ularly at lesion sites and boundary areas. It seems that, as
Mehrtash et al. [36] strongly emphasize, higher levels of
uncertainty at boundaries are still evident. Nevertheless,
medical professionals can evaluate comprehensive results
and examine uncertainty maps to identify areas of low con-
fidence, thereby enhancing the decision-making process in
clinical practice.

6.3. Validating CAMEL’s Generalizability
To evaluate the generalizability of CAMEL on other OCT

datasets, we used the publicly available OCT5k [3] dataset
and compared the model’s performance with baseline mod-
els. As shown in Table 4, CAMEL outperformed all base-
line models in both classification and segmentation tasks.
Notably, while our dataset focuses on labeling small lesion
areas, the OCT5k dataset is annotated based on the lay-
ers seen in OCT images. Despite this difference, CAMEL
demonstrated strong performance on the OCT5k dataset,
highlighting its ability to generalize across different types
of annotations.

6.4. Computational Complexity
While model performance is crucial, computational ef-

ficiency is also important for real-world clinical applica-

tions. We compared the training and inference times of
CAMEL with baseline models using the OCT5k [3] dataset.
As shown in Table 4, CAMEL took 1983.23 seconds for
training and 14.62 seconds for inference, which is slightly
higher than classification-only baselines but comparable to
segmentation-only models and faster than multi-task mod-
els. Removing ensemble learning could reduce time com-
plexity, though it would lower performance, highlighting
the trade-off between efficiency and accuracy in clinical set-
tings.

6.5. Single-task vs. Multi-task
Table 5 presents a comparison between single-task and

multi-task approaches for CAMEL, which addresses three
primary tasks: Segmentation, Classification, and ERM de-
tection. Experiments were conducted for each task indi-
vidually, in pairwise combinations, and jointly for all three
tasks (see Tasks in Table 5). As shown, multi-task learn-
ing significantly improves performance, especially for clas-
sification and ERM detection accuracy. While segmen-
tation performance (Dice score) slightly decreased when
combined with classification or ERM detection alone, it no-
tably improved when all tasks were integrated, particularly
for small and sparsely distributed regions like IRF. This
highlights the advantage of multi-task learning in CAMEL,
demonstrating that disease-specific branches (e.g., ERM)
enhance the detection of small regions alongside classifi-
cation and segmentation.

6.6. Ablation Study
Table 5 presents the results of the ablation study for each

component of CAMEL. Multi-task learning (MTL) alone
performed worse than when combined with Confidence-
Aware (CA) or Ensemble methods (Ens). The best perfor-
mance was achieved when all methods were used together.
The first and second rows in Figure 4 compare the results
with and without ensemble learning (MTL vs. MTL+ Ens),
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Table 6. Performance comparison between our data pre-processing method and other resizing techniques on OCT segmentation. B.G.
denotes Background, and Avg. denotes Average. The value of the table presents the Dice score.

Method ERM Retina IRF SRF SHRM RPE PED Choroid B.G. Avg.

Bicubic 0.6432 0.9527 0.5092 0.7952 0.5913 0.5637 0.5539 0.8728 0.9659 0.9408
Linear 0.6611 0.9537 0.5151 0.7819 0.5986 0.5683 0.5573 0.8744 0.9663 0.9414

Lanczos4 0.6498 0.9488 0.5150 0.8139 0.5761 0.5216 0.5324 0.8638 0.9649 0.9380
Nearest 0.6741 0.9524 0.5117 0.8018 0.5811 0.5531 0.5416 0.8704 0.9654 0.9407

Our pre-processing method 0.8789 0.9768 0.8610 0.9503 0.9721 0.9336 0.9593 0.9731 0.9960 0.9880

where applying ensemble methods improved prediction ac-
curacy, as seen in the ERM and IRF calibration maps. The
second and third rows in Figure 4 further illustrate the ben-
efits of adding Confidence-aware instructor (MTL+ Ens vs.
MTL+ Ens+ CA), showing that calibration enhances per-
formance by more accurately capturing uncertainty without
overconfidence.

6.7. Comparison with Interpolation Methods in
OCT Image Pre-processing

Table 6 compares the effects of different image resizing
methods on the segmentation performance of CAMEL. In
this study, images and masks were resized to 320 ⇥ 320 di-
mensions. Notably, using the resized masks generated by
our proposed pre-processing method resulted in the high-
est Dice score, demonstrating the effectiveness of the pro-
posed image resizing techniques for segmentation tasks in
CAMEL.

7. Conclusion
In this paper, we introduced CAMEL (Confidence-Aware

Multi-task Ensemble Learning), a model designed for accu-

rate and comprehensive classification and segmentation of
retinal OCT images. By calculating model confidence at
both the pixel and image levels and employing confidence-
aware ensemble learning, CAMEL effectively reduces task-
specific uncertainty, improving both performance and re-
liability. Experiments on our retina OCT dataset, manu-
ally annotated by three retina specialists, show that CAMEL
outperforms single-task models, achieving a Dice score
of 0.9880 on the test set, especially in scenarios involv-
ing small regions and severe class imbalances. Addition-
ally, validation on a publicly available dataset confirms the
model’s generalizability for retinal OCT image classifica-
tion and segmentation. Future work will explore expanding
our approach to other medical imaging domains.
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